当前所在位置: 1级文库 > 精选推荐 > 正文

九年级《反比例函数》说课稿(通用10篇)

2024-03-04 22:32:10 1级文库

九年级《反比例函数》说课稿(通用10篇)

  作为一位不辞辛劳的人民教师,时常要开展说课稿准备工作,说课稿有助于提高教师的语言表达能力。那么问题来了,说课稿应该怎么写?以下是小编收集整理的九年级《反比例函数》说课稿,希望对大家有所帮助。

九年级《反比例函数》说课稿

九年级《反比例函数》说课稿 第一篇

尊敬的各位考官:

  大家好,我是xx号考生,今天我说课的题目是《反比例函数》。

  新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先来谈一谈我对教材的'理解。

  本节课选自人教版初中数学九年级下册第二十六章第一节《反比例函数》,它是在学生已经学习正比例函数、一次函数、二次函数的基础上进行教学的。教材通过几个生活实例给出反比例函数关系,通过观察函数解析式发现其特点并归纳概念,然后进行相关知识的学习,为后面研究反比例函数的图象和性质以及高中学习更复杂的函数打下基础,所以本节课起着承上启下的作用。

  二、说学情

  接下来谈谈学生的实际情况。本阶段的学生已经具备了一定的分析能力和观察能力,但是思考问题还不够全面,故而仍需要老师的引导,在授课过程中我会注意这一点,选择灵活多变的教学方式。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解并掌握反比例函数的概念及自变量取值范围,能用反比例函数解决简单问题。

  (二)过程与方法

  经历反比例函数一般形式及概念的得出过程,提升观察能力和总结归纳能力。

  (三)情感、态度与价值观

  体会数学与生活的联系,激发学习数学的兴趣。

  四、说教学重难点

  在教学目标的实现过程中,教学重点是:反比例函数的概念;教学难点是:反比例函数的概念的形成过程,自变量的取值范围。

  五、说教法和学法

  为了突破重点,解决难点,顺利达成教学目标,本节课我将采用激、导、探的教学方法,让学生带着问题学、在探索中学、在合作交流中学。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

九年级《反比例函数》说课稿 第二篇

  一、说教学设计意图

  首先由学生尝试举出实际生活中某两个量出租反比例关系的例子,自然地引入利用所学的反比例函数来解决实际问题,在数学课上引用一个用“杠杆规律”的实际问题,一下子抓住学生的好奇心理。激发了他们的学习兴趣。利用了公元前3世纪古希腊科学家阿基米德发现的“杠杆定律”中力与力臂两个量的反比关系,将他们运用到用数学来解决问题,激发学生求知热情。也培养他们科学探索精神。

  实际问题向数学问题他转化是解决问题的关键。教师有理有据地引学生通过反比例函数模型实现这一目的。让学生体会其中的转化思想,逐步掌握转化的`方法。函数模型没有变,但两个量的角色发生变化,体会变与不变的思想。通过这种方法的学习,让学生学会归纳、总结所学的知识。使学生初步形成运用反比例函数解决实际问题的意识打好基础。

  通过以学生身边熟悉的星海湖水利工程为实际问题创设练习题,让学生进一步加深对反比例函数的运用和理解,更深层次形成反比例函数模型来解决实际问题的意识,巩固和提高所学知识。给学生足够的时间和空间,为他们创造展示能力和应用所学知识的机会。

  最后,通过小结,使学生把所学知识进一步内化、系统化。

  二、说内容

  本章的反比例函数的内容属于《全日制义务教育数学课程标准——数学》是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴。反比例函数是基本的函数之一,本章共分为两节,第17-2节的内容是如何用反比例函数解决实际问题或如何用反比例函数解释现实世界中的一些现象。本节课主要涉及在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数。

  三、说目标

  本节课的目标是通过“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题。教学重点:运用反比例函数解释生活中的一些规律,解决一些实际问题。教学难点:把实际问题利用反比例函数转化为数学问题加以解决。

  四、说教法

  本节课是实际问题与反比例函数的学习,我采用的教学方法是,要培养学生学习数学的积极性,并且精心引导学生通过反比例函数模型来实现解决实际问题。在这引导过程中让学生体会老师是如何将实际问题向数学问题转化的。

  五、说学情

  从学生初步接触函数所蕴含的“变化与对应”思想,至今已经半年有余,学生对与函数相关的概念不可避免会有些遗忘,再加上我们的学生大多数都是外来务工子女,好的习惯没有养成,所以基础知识差。特别是分析能力和计算能力。在进行活动中可能达不到预期的效果。

  六、说教学安排

  活动一、创设情境,引入新课目的老师提出生活中遇到的问题,请学生帮助解决,激发学生的兴趣。

  活动二、分析解决问题 目的与学生共同分析实际问题中的变量关系,引导学生利用反比例函数解决问题。

  活动三、从函数的观点 进一步激发学生学习兴趣目的是引导学生利用“杠杆规律”培养科学探索精神。

  活动四、巩固练习 目的通过课堂练习,提高学生运用反比例函数解决实际问题能力。

  活动五、课堂小结 布置作业 目的归纳总结所学的知识,体会利用函数的观点解决实际问题。

九年级《反比例函数》说课稿 第三篇

  一、教材分析

  反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初三学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的`认识。

  二、 教学目标分析

  根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:

  1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.

  2.体会函数的三种表示方法的互相转换.对函数进行认识上的整合.

  3.逐步提高从函数图象获取信息的能力,探索并掌握反比例函数的主要性质.

  (二)能力训练要求

  通过学生自己动手列表、描点、连线,提高学生的作图能力;通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力.

  (三)情感与价值观要求

  让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲。

  三、教学重点难点分析

  本堂课的重点是:

  1、画反比例函数的图象;并从函数图象中获取信息。

  2、探索并研究反比例函数的主要性质。

  本堂课的难点是:反比例函数的图象特点及性质的探究。

  为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

九年级《反比例函数》说课稿 第四篇

  今天我说课的内容是人教版代数章第节反比例函数及其图象。面我从教材分析、教法设计、学法指导、教学过程、几个方面进行阐述。

  一、教材分析主要从地位与作用、教学目标、重点难点三方面进行阐述。

  (一)地位与作用

  本节课所研究的内容是反比例函数及其图象,函数知识是初中代数的核心内容。随着学习的不断深入,函数把前面所学的方程,不等式等知识有机结合起来,是整个初中代数知识的“桥梁”,反比例函数及其图象是在学生已经初步掌握研究函数的基本方法的基础上,有别于解析式为整式的一次函数。同时,反比例函数的图象也与众不同。

  (二)教学目标

  依据数学课程标准的要求和教材内容,结合初三学生的认知特点和实际情况,我确立以下教学目标:

  ●知识技能目标:

  1、知识目标:

  (1)使学生了解反比例函数的概念

  (2)使学生能够根据问题中的条件确定反比例函数的解析式。

  (3)使学生理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。

  (4)会用待定系数法确定反比例函数的解析式。

  2、能力目标:

  培养学生的观察能力,分析能力,独立解决问题的能力。

  3、德育目标:

  (1)向学生渗透数学来源于实践又反过去作用于实践的观点。

  (2)使学生体会事物是有规律地变化着的观点。

  4、心育目标:

  (1)通过学生独立的解决问题,增强学习意志。

  (2)让学生在做中学,敢于并乐于展示自我,敢说,敢问,敢于相信自我。

  (3)克服对数学学习的畏惧,学习过程中的惰性及对教师的依赖性。

  (4)培养对数学学习的信心。

  (三)教学重点,难点。

  1、教学重点:反比例的概念、图象、性质,以及用待定系数法确定反比例函数的解析性。

  2、教学难点:画反比例函数的图象。

  因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。

  二、教法设计

  根据本节课的内容,结合初三学生的认知特点,我确定本节课教法的整体构思是:从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、思考、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展;这样做,充分体现了“学生是课堂的主人,教师是数学学习的组织者、引导者与合作者“和以学生的发展为本的新课程理念,另外,我还注意现代信息技术与学科教学的整合,充分利用多媒体技术,采用动画的'形式,变抽象为直观,变复杂为简单,有效的突破重点、难点,同时加快了教学节奏,扩大课堂容量,极大地提高了课堂教学效益。

  三、学法指导:

  在教学过程中,学生掌握一种方法远比学会一个知识点重要的多。为使学生掌握科学的学习方法,养成良好的学习习惯,我根据课程标准的要求及本节的内容以及学情分析,在课堂教学中,我充分发挥学生在教学中的主体作用,让他们观察、操作、归纳、猜想和验证的方式进行学习,养成善于观察、乐于思考、勤于动手、敢于表达的学习习惯,挖掘学习潜能,培养自主学习和与人合作交流的能力。

  四、教学过程:

  (一)导入新知:

  提问:

  1、小学时我们是否反比例关系?结合实例谈一谈如何叙述反比例关系?

  (1)当路程S一定时,时间t与速度v之间的关系。

  (2)当矩形面积S一定时,长a与宽b之间的关系。

  2、若从函数的观点看,上面例子中的两个变量可以分别看作自变量和函数。可以写成怎样的函数关系式呢?

  让学生改写,得出结论。用以得出反比例函数的概念。

  设计意图:通过课件展示的实例,形象地把抽象的定义引出。增加学习兴趣,降低思维难度,减少学生对函数部分学习的畏惧心理。增加学习兴趣,强化主动的学习动机。

  (二)新课传授:

  1、反比例函数的定义。

  问1、说出观察两个变形式后的初步印象,什么是反比例函数?

  问2、当路程S是常数时,时间t就是速度v的反比例函数,能否说:速度v是时间t的反比例函数呢?(学生思考,进一步加深对反比例函数概念的理解)

  巩固练习:(投影出示练习题)学生口答。鼓励学生积极思考,勇于表达自己的想法,回答好的给予赞扬,不完善的或不得要领的给予热情的帮助,鼓励。

  这一环节让学生自主探索,循序渐进的挖掘定义的内涵,去体会数学的严谨。通过授课的语言,表情动作为学生创设民主的氛围,为学生自信的心理品质的发展和学习主动性的培养提供良好的心理环境。

  2、反比例函数的图象和性质

  (1)学生体会,自己动手画图。

  (投影出示)画出反比例函数的图象。

  问1:画函数图象的关键问题是什么?

  问2:选值时,你认为要注意什么问题?

  问3:你能不能自己完成这道题?

  让学生自己动手,帮助学生消除依赖心理,把作图最标准的用投影仪投出,以此为例图。并希望大家学习,养成良好的学习习惯,培养严谨的学习态度。

  (2)引导学生分析图象的特征和性质

  问:观察函数y=kx和y=kx-1的图象。分析反比例函数的特征。找出反比例函数图象有那些共同的特点?有那些不同的特点?

  ①分组讨论,并鼓励全体同学要细心,有耐心,善于观察、善于发现并相信靠大家的智慧会全部找出。这一环节意在培养学生的观察、猜想能力,用自主探索、合作讨论交流的方式,促进学生的积极参与,积极的去发现、思考,体会学习方法。

  ②找学生小结本组讨论的结果。

  (看哪组总结的最全、语言最标准、简练,不够准确的下面组可以给予补充)在本环节中回答精彩的给予肯定,没想出的鼓励大家继续去发现,最后让大家去评判回答最佳组,激励大家学习他们肯于动脑、积极思考的态度,让大家给予掌声,让学生体会努力后成功的感觉。并学会且乐于自己去思考问题,解决问题。

  ③根据对图象的观察,由得到的图象特征总结反比例函数的性质。

  (由电脑投影出空表格,大家一起添表格内容,巩固记忆)

  图象

  性质:

  双曲线的两分支位于一、三象限,y随x的增大而减小。

  双曲线的两分支位于二、四象限,y随x的增大而增大。

  设计意图:使每个学生的认知、条理更清晰,呈现出本节课知识重点,巩固记忆。又因为是大家努力的结果,使学生

  体会团结协作的作用和努力后的成就感和自豪感。

  3、(待定系数法)确定函数解析式

  投影出示例题:已知y与x成反比例,并且当x=3时y=4

  求x=1.5时,y的值。

  用提问的方式对此题加以分析、

  (1)y与x成反比例是什么含义?

  (2)根据式子能否求出当x=1.5时,y的值?

  (3)要想求出y的值,必须先知道哪个量呢?

  (4)怎样才能确定k的值?用什么条件?

  (5)你能否自己完成这道题?(学生板演)

  设计意图:在问、想、做中鼓励思考,体会成功的感觉,让学生在做中学,敢于并乐于展示自我,使学生敢说、敢问,敢于相信自我。

  4、巩固练习(反比例函数性质的巩固与拓展)

  (投影出示自选题目)

  联系所学知识由学到用的结合。使学生对新知识有更深的理解,是知识从感性到理性的一个跃迁。

  5、总结:

  学生:从学习知识和情感体验等方面谈体会和收获。

  教师:肯定大家的努力及大家在本堂课中的表现。表扬在本节课中表现突出的同学。

  6、布置作业

  教材130页1、2、3、4、131页5、6。

九年级《反比例函数》说课稿 第五篇

  今天我说课的内容是华东师大版八年级数学下册第十七章反比例函数及其图象。

  一、教材分析:

  本课时的内容是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受到现实世界中存在各种函数。反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

  二、教学目标分析:

  根据新课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

  因此把教学目标确定为:

  (一)知识目标:

  1、使学生了解反比例函数的概念

  2、使学生能够根据问题中的条件确定反比例函数的解析式。

  3、使学生理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。

  4、会用待定系数法确定反比例函数的解析式。

  (二)能力目标:

  培养学生的'观察能力,分析能力,独立解决问题的能力。

  (三)德育目标:

  1、向学生渗透数学来源于实践又反过去作用于实践的观点。

  2、使学生体会事物是有规律地变化着的观点。

  (四)美育目标:

  通过反比例函数图象的研究,渗透反映其性质的图象的直观形象美,激发学生的兴趣,也培养了学生积极探索知识的能力。

  三、教学重点,难点。

  (一)教学重点:反比例的概念、图象、性质,以及用待定系数法确定反比例函数的解析性。

  (二)教学难点:画反比例函数的图象。

  (三)解决方法

  (1)由分组讨论,积极思考,分析问题,发现结论。

  (2)训练,研究,总结

  因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

  四、教学方法:

  初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。鉴于教材和初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究。

九年级《反比例函数》说课稿 第六篇

  一.说教材

  《反比例函数的应用》是苏科版八年级下册第九章第三节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。这一节的内容符合新课程理念,课程要面向生活世界和社会实践。反比例函数的知识在生产和实际生活中经常用到,掌握这些知识对学生参加实践活动,解决日常生活中的实际问题具有实用意义。通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。在教学过程中,还渗透着建模思想、函数思想、数形结合思想,这些思想也为后面学习二次函数的应用奠定了基础。

  二.说目标

  “反比例函数的应用”是反比例函数及其图象中的一个重要的内容,它是前面几节课的综合应用。由于函数知识在日常生活中有重要的实用意义,根据教学大纲的明确规定并结合素质教育要求,通过本节课的教学达到以下目标:

  1、知识目标

  使学生了解反比例函数是日常生活和生产实际中应用十分广泛的数学模型,使学生掌握生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。

  2、能力目标

  ①使学生能模仿“利用函数解决实际问题的基本步骤”来解决简单的实际问题;初步养成自己提出或构建数学模型的能力;提高综合运用函数、方程、不等式知识解决实际问题的能力。

  ②引例通过开放性的问题,作业中通过编题培养学生的发散思维能力。

  3、情感目标

  ①通过本节知识的学习,使学生明确,应用反比例函数的知识可以解决生活中的许多问题,从而进一步培养学生热爱数学,进而努力学好数学的情感。

  ②使学生树立事物是普遍联系的辩证唯物观。

  ③引例中让学生具有一方有难八方支援的'献爱心精神。

  三.说教学重难点

  我认为本节课的教学重点是把一类实际问题归结为反比例函数问题来解决,这是因为:

  1.反比例函数是日常生活和生产实践中应用十分广泛的数学模型,它真正体现了数学知识来源于生活又应用于生活的重要意义。

  2.“利用反比例函数解决实际问题的基本步骤”是通过对例题的解题过程进行归纳总结而得到的结论。它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。对今后学习数学有着重要的指导意义。

  我认为本节课的教学难点是从实际问题中抽象出数学问题,建立数学模型,注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。

  在突破难点时,我注意:

  1.使学生熟练掌握反比例函数的图象和性质,教学生学会“数形结合”的研究方法,它直观、形象、好理解。

  2.密切联系实际问题,注意观察生活。

  四.说教学方法

  (一)教法分析

  根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。对于例1,由于学生初次接触反比例函数的应用,我采用的是教师引导法,降低难度.其余,我都采用的教学方法是问题教学法,让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:

  1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。

  2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。

  (二)学法分析

  这种教学方法实际上也教给学生一种学习方法,使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。

  (三)教学手段

  采用多媒体教学,通过直观演示图象,更好地教会学生“数形结合”的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。

  五.说教学过程的设计

  (一)创设情景,提出问题

  “问题是数学的心脏”(P.R.Halmos语),是数学知识、能力发展的生长点和思维的动力。在课堂教学的开始,我创设了这样一个情景:

  去年下半年,励才中学初一(2)班黄晶晶同学的爸爸诊断为肝癌,家中又突发一场大火,真是祸不单行,一下急需的10万元款从何而来,关键时刻,群众积极响应镇政府的号召,一方有难八方支援,结果,捐款总额比预期的还要理想。如果你是镇政府领导,你除了积极做好思想动员工作之外,能不能运用反比例函数的知识对即将发动群众献爱心进行策划呢?

  为了很好的解决这一问题,我们共同来学习以下两道题目:

  设计意图:由学生身边的事出发,激起学生的爱心,为积极筹划这个活动,带着对数学的求知欲,进入例题的学习。

  (二)范例设计

  学习例1:

  小明家离学校1500m,某天小明上学时,发现时间不多了,就加快了行车速度,①小明行车平均速度(υ)与所用时间(t)有怎样的函数关系?②如果所剩时间为15分钟,那么小明的平均速度至少达到多少才能按时到校?③为了安全起见,小明的平均速度最快达到90m/min,他至少要留多长时间,才能安全到校?④画出函数的图象。

  例1中,出现了一个常量,两个变量;我们看,平均速度(υ)随所用时间(t)的变化而怎样变化?是否为反比例函数关系?若是可用反比例函数的有关知识去解决问题。

  ②、③两问实际上就是函数的特殊情形,一是已知自变量,求函数值;一是已知函数值,求自变量。从这两问,再引导学生探求自变量的取值范围。④问中,指导学生画图,分析问题(多媒体展示函数图象)。

  设计意图:这道题是课本例1的改编,更换背景的目的是为了更贴近学生的生活,以更好地激发学生的求知欲。后面的例2也是在课本例2的基础上添加了一个背景,目的也是如此。

  由于学生初次接触反比例函数的应用问题,我选择教师引导法。引导学生联系反比例函数图象及性质建立反比例函数模型,渗透函数思想,数形结合思想。在画图象前,已引导学生探究自变量的取值范围,这样就化解了教学难点。

  小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4×104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨:

  ①蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?

  ②如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?

  ③由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长和宽最多只能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?

  这是个几何体积问题的应用题,我通过设置以下问题,引导学生观察思考,逐步分析,最后通过建立函数这种数学模型解决问题。

  问题(1):这是一个几何体积问题,问题中包含有哪些量?哪些是常量?哪些是变量?

  问题(2):在容积不变的情形下,蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?为什么?写出关系式。

  问题(3):函数关系式中自变量的取值范围如何确定?从而决定函数值的取值范围又是怎样?

  问题(4):能否画出函数的图象? (指导学生画图,分析问题,多媒体展示函数图象。)

  问题(5):题中②、③两问能否利用图象来解?如何解?

  问题(6):题中②、③两问除了利用图象来解之外,是不是也可以利用方程解或不等式解?

  设计意图:对例2采用了设计问题系列,启发学生思考,联系旧知识建立函数模型,解决了自变量的取值范围从而确定了函数值的取值范围,渗透了函数的思想,让学生初步了解函数模型的建立方法。最后渗透一题多解方法,培养学生思维的灵活性,渗透“函数——方程——不等式”思想和“数形结合”的研究方法,引导学生学会解题后的再思考,将知识系统化。

  (三)反馈练习

  “学数学而不练,犹如入宝山而空返”(华罗庚语),为了让学生更好地学会反比例函数知识的应用,我设计了例2的后续问题,让学生练习。使课堂教学能前后连贯。

  例2中的新建蓄水池工程需要运送的土石方总量为4×104m3,某运输公司承担了该项工程运送土石方的任务。

  ①运输公司平均每天的工程量υ(m3/天)与完成运送任务所需要的时间t(天)之间有怎样的函数关系?

  ②运输公司共派出20辆卡车,每辆卡车每天运土石方100 m3,则需要多少天才能完成该任务?

  可以通过此类题反馈本节所学,检查学生是否掌握了“数形结合”的研究方法,及时加强对数据和信息的处理能力。

  (四)回到引例,前后呼应

  ①现在大家能否利用我们刚掌握的知识来策划发动群众献爱心呢?

  ②如果每人平均捐款100元,那么需要发动多少人捐献。根据实际生活水平,每人平均捐款只能达到50元,那么至少要发动多少人捐献?发动人数与每人平均捐款数成怎样的函数关系?当每人平均捐款数一定时,捐款总额与发动的人数成怎样的函数关系?

  设计意图:让学生回到课堂之初的问题中,解决问题,使整个课堂教学浑然一体,体验学习数学的乐趣。

  (五)收获

  教师启发学生思考回答下列问题,再由教师补充归纳本节所学知识内容。

  (1)通过本节反比例函数的应用的学习,我们掌握了生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。

  (2)初步学会了数学建模的方法。

  (3)树立了事物是普遍联系的辩证唯物观。

  (六)作业布置

  根据新课程理念,人人学有价值的数学,不同的人在数学上有不同的发展。我的作业布置分必做题和选做题两部分,其中选做题是一道自编题,我的目的是既巩固所学知识,又复习了旧知,同时还能让学生体验一下做老师的愉悦。

  (4)必做题:①看课本例1、例2。

  ②做课本习题9.3

  (5)选做题:

  4月6日,姜堰溱湖湿地公园游人如织,来自世界各地的游人蜂拥而至,“小数学”利用早上上学前的时间,来到公园门口,他发现……。请你利用我们学过的知识,编两题,要求分别能利用正比例函数和反比例函数解决问题。

  收获

  结束语:

  教学过程是一个不断生成的过程,在教学过程中,我将根据学生实际情况,不断调整我的教学内容,以使学生在课堂上的思维永远处于一种亢奋状态。

  说课对我来说是新事物,今后我将进一步说好课,并希望各位专家领导对本节课提出宝贵意见。

  谢谢各位!

九年级《反比例函数》说课稿 第七篇

各位评委:

  大家好!

  今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。我将从如下步骤进行。

  一、说教材

  1、内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2、学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1、从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。

  好学教育:

  因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

  五、说教学过程

  (一)创设情境,发现新知

  首先提出问题

  问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?

  【设计意图及教法说明】

  在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。

  问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,(1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表。

  R/Ω20406080100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  【设计意图及教法说明】

  因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。

  问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?

  【设计意图及教法说明】

  学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。

  问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  【设计意图及教法说明】

  好学教育:

  问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。

  (二)合作探究,获得新知

  1、出示问题

  想一想,你还能举出类似的例子吗?

  【设计意图及教法说明】

  这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。

  2、启发学生建构新知

  反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

  反比例函数自变量不能为0!

  反比例函数的一般形式:y=k/x(k为常数,k≠0)

  反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)

  【设计意图及教法说明】

  这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。

  (三)反馈练习,应用新知

  根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。

  1、基础过关

  (1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?

  ①y=x/5②y=6x-1③y=-3x-2④xy=2

  【设计意图及教法说明】

  此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。

  好学教育:

  (2)做一做

  ①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  ②某村有耕地346、2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

  ③y是x的反比例函数,下表给出了x和y的一些值:

  a、写出这个反比例函数的表达式;

  b、根据函数表达式完成下表。

  表略。

  【设计意图及教法说明】

  通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的'能力,也达到了学以致用的目的。

  2、能力拓展

  (1)你能举个反比例函数的实例吗?与同学进行交流。

  (2)y=5xm是反比例函数,求m的值。

  【设计意图及教法说明】

  问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。

  (四)归纳总结,反思提高

  通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。

  (如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)

  【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。

  (五)推荐作业,分层落实

  必做题:课本第134页习题1、2题。

  选做题:已知y与2x成反比例,且当x=2时,y=-1,求:

  (1)y与x的函数关系式。

  (2)当x=4时,y的值。

  (3)当y=4时,x的值。

  好学教育:

  【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。

  【名师点评】

  说课者对本节课的特点把握较好。无论是教材的分析,还是学情的了解;无论是重点的把握,还是难点的确定;无论是目标的定位,还是时间的分配;无论是资源的选择,还是教学的构想都能够围绕内容进行宏观性说课。

  然而,从这次说课中也不难看出存在的问题:设想中的不少环节均没有得到体现,实际效果离设计相差不小。也许过于想要达到预期效果,在准备过程中多多少少忽略了学生的想法。在备课过程中,没有考虑学生,站在学生的角度去设计课堂,这方面做的很不够。所以教学设计虽然体现了精讲多练,实时检测,但还是效果一般。

  另外说课中教师操作技术不熟练,板书不够端正,肢体语言的多余动作、类似口头禅的多余话较多,需要在今后的教学过程中严格要求自己,对方方面面进行改善!

九年级《反比例函数》说课稿 第八篇

  一、教材分析

  本节是《反比例函数》的小结与复习课。函数本身是数学学习中的重要内容,而反比例函数又是基础函数。反比例函数是继一次函数学习之后又一类新的函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。通过本节课对本章知识的复习,让学生进一步体会反比例函数的意义,了解反比例函数的图象,能根据图象和解析式进一步探索并理解反比例函数的性质,能用反比例函数解决某些简单的实际问题。因此,本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过程。

  二、教学目标分析

  根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:

  1、知识与能力目标:

  (1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

  (2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。

  2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

  3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

  三、教学重点难点分析

  由于本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过程。可以帮助学生形成解决问题的一些基本策略,提高分析问题,解决问题的能力和发展他们的创新精神。所以我确定本节课的教学重点是进一步掌握反比例函数的`概念、图像、性质并正确运用。教学难点是反比例函数性质的灵活运用。数形结合思想的应用。

  四、教学方法分析

  根据教材特点及学生的年龄特点、心理特征和认知水平,我采用合作交流、集体探究的方法启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

  五、学法指导

  本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙

  六、教学设计的基本思路

  (一)知识梳理:主要说明本章的内容由反比例函数的意义;反比例函数的图象与性质;利用反比例函数解决实际问题三大块组成。

  (二)合作交流,解读探究

  1、复习反比例函数概念及其等价形式。并设计了相应的配套练习:判断反比例函数并指出其中的K值;结合物理知识写函数关系式,体会数学知识来源于生活,考查学生对反比例函数系数及自变量的指数的掌握情况。

  2、复习反比例函数的图象与性质,并用来解决问题。也设计了相应的配套练习:根据K值确定反比例函数所在象限及其一支(X>0)的增减性,根据函数关系式和给定自变量(函数值)求函数值(自变量的值);由图像性质和K值的关系确定m的取值范围;用待定系数法求反比例函数解析式;根据函数增减性及所给函数图像上点的横坐标判断个点函数值的大小,难度较大,学生不易掌握。

  3、综合运用:给出一次函数的图像y=ax+b与反比例函数y=相交的示意图及交点M(2,m)N(-1,-4)两点。求反比例函数和一次函数的解析式并根据图像写出反比例函数的值大于一次函数的值的X的取值范围。此类题目在中考中常见。是一次函数和反比例函数的综合应用,主要用数形结合思想和待定系数法求解,可以提高学生的观察、分析、综合应用及合情推理能力。

  (三)随堂练习:贯穿于整个课堂教学中,具体内容见课件。

  (四)归纳总结:

  由学生总结本节课所学习的主要内容:

  1、反比例函数的意义;

  2、反比例函数的图像与性质;3数形结合思想

  让学生通过知识性内容的小结,把课堂所学的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  (五)布置作业

  (六)课后反思:

  1、在本课时的师生互动过程中,积极创造条件和机会,让学生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。

  2、尽量体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力。

  3、即时训练——巩固新知。为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把配套练习中的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  4、存在的问题:学生配合不够积极,积极回答问题的学生少,学生的积极性没有充分调动起来;对中下学生关注的太少;教师说的多,学生没有充分的时间讨论交流;课堂教学内容稍多,在规定时间内没有完成教学任务。

九年级《反比例函数》说课稿 第九篇

  一、教材分析

  这是本章的第二节,研究对象是反比例函数的图像及其性质,其学习以正比例函数的图像及其性质为基础,在学习过程中可以借助前面学习的正比例函数的有关知识和研究方法,确定研究方向,因势利导,从而类比形成新的知识结构体系,整个过程特别注重让学生自己探索发现,培养学生类比、观察、猜想、归纳等独立思考的能力,在函数知识里边,还渗透了数形结合的思想,方程的思想,“运动—变化”的辩证唯物主义思想,并且能进一步加强代数与几何的联系,可为后阶段学习一次函数、二次函数的有关知识打下良好的基础。

  二、学情分析

  我校这届学生,多是务工子女,基本能力和技能较低,因此在教学时要为学生创设自主探索合作交流的环境,以直观,操作观察,概括和交流作为重要的活动方式,通过这些活动逐步提高从函数图像中获取信息的能力,提高感知水平。

  学生在第一节中已经学习过“正比例函数”的内容,对函数已经有了初步的认识,在此基础上研究讨论反比例函数图像及其性质对后继学习产生积极影响,再说学生可以结合实例经历列表、描点、作图等活动,理解函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动空间,可以使学生更牢固地掌握由他们自己发现的反比例函数的性质。

  三、教学目标

  1 进一步熟悉画函数图像的主要步骤,能利用描点法正确画出反比例函数的图像。

  2 逐步提高从函数图像中获取信息的能力,探索并掌握反比例函数图像的主要性质。

  3 通过类比、观察、猜想、归纳等激发探究新知识的热情,经历体验知识产生、形成和发展的过程,增强学习数学的兴趣。

  4 在动手作图的过程中,体会做中学的乐趣,养成勤于动手,乐于探索和与他人合作交流的习惯。

  四、教学重点与难点

  教学重点:理解反比例函数的图像,掌握反比例函数的性质

  教学难点:对反比例函数性质的理解。

  五、教法分析和学法指导

  本课教学采用探讨研究法、发现法、讲、练结合法.其依据是:

  ⑴遵循教材的结构特点和学生的认知能力。

  ⑵教学方法改革发展的新趋势:注重启发式,加强对学生学法的研究和指导。

  ⑶教师的主导作用和学生的主体参与有机的结合。

  六、教学过程

  (一)创设问题情境,引入新课

  师:同学们还记得我们学过的正比例函数吗?正比例函数的图像是什么图形?你在画图时需要采用哪几个步骤?

  生:记得,是一条经过原点的直线。

  (1)列表

  (2)描点

  (3)连线

  设计意图:回顾正比例函数图像作法的基本步骤,为学习反比例函数的图像和性质做准备。

  (二)提出问题,探究新知

  师:上节课我们学习了反比例函数的一般解析式是什么?

  生: 反比例函数的.一般解析式是

  师:请同学们来猜想一下反比例函数的图像是什么?让我们一起画个反比例函数的图像看看,好吗?

  操 作:同桌两人分别画出反比例函数 或 的函数图像。(分组进行列表画图)(课前已经准备好方格纸片和彩色笔、铅笔)

  按照研究正比例函数图像即一般函数图像的一般步骤,通过列表、描点、连线来画出它们的图像。

  以小组为单位,先列出表格,再进行描点、连线。注意:

  ①列表时自变量取值要均匀和对称

  ②x≠0

  ③选整数较好计算和描点。(教师提示)

  设计意图:让学生亲自动手操作,会画反比例函数的图像,可以培养学生的动手能力,激发学生学好数学的兴趣,去为发现反比例函数的性质做准备。分组画图的目的是为后面的合作交流做铺垫。采用彩色笔,通过颜色变化,有利于反映和发现问题。

  通过学生自己画的图像,经过仔细观察,从而得出反比例函数的图像是双曲线。(教师可做提示一般一个分支取4~6个点)

  比 一 比:同桌两人分别画出函数 或 的图像,看谁画得又快又好。(展示学生作品)

  设计意图:通过比一比的方式,提高学生的画图技能和计算能力,利用对好作品的展示又可激发学生学习的兴趣,增强自信心。

  (三)探索比较,发现规律

  师:下面大家分四人一小组讨论,根据大家所画出的函数图像,从以下几个方面出发,你能发现反比例函数的图像及性质有哪些?

  1 你能发现它们的共同特征以及不同点吗?

  2 函数图像分别位于哪几个象限?

  3 在每一个象限内,y随的x变化有怎样的变化?

  设计意图:提高学生从函数图像中获取信息的能力,探索并掌握反比例函数的主要性质,体会分类讨论的思想,数形结合思想的运用,并引导学生积极参与探索活动,注意多和同伴交流看法。

  师:讨论结束后,由各小组选代表说说讨论结果。

  师生行为:

  学生分组针对上面3个问题,结合画出的图形分类讨论,归纳总结出反比例函数的图像的性质:

  (1)反比例函数y = (k为常数,k≠0)的图像是双曲线。

  (2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y随x值的增大而减小。

  (3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y随x值的增大而增大。

  (四)运用新知、拓展训练

  (抢答题)

  1.反比例函数的解析式是 。它的图像是 。

  2.当k< 0 时,反比例函数 的图像的两个分支分别分布在第 象限内;在每一象限中,y值随x值的增大而 。

  3.已知函数 ,如果y随着x增大而减小,那么k的取值范围是 。

  4.反比例函数 ,那么在x﹤0时,y的值随x的增大而 。

  5.在函数 中,当m= 时,它是反比例函数。y随x的增大而

  6. 若两点(x1, y1),(x2, y2)反比例函数 的图像上有,且x1< x2<0,则y1与y2的关系是( )

  A. y1> y2 B. y1< y2

  C. y1=y2 D.大小无法确定

  设计意图:检验学生对本课知识的掌握及应用情况。通过练习,既培养学生思维的敏捷性,又激发学生的参与和竞争意识.在抢答过程中,教师给予适当评讲,并积极调动学生的参与热情,让整个课堂充满活跃的气氛.

  (五)归纳总结,布置作业

  师:让学生谈谈收获(讨论后请几位学生发言)

  1、你学到了哪些知识?

  2、你还有哪些疑问?

  设计意图:通过学生自由讨论、总结、概括本节所学习的内容,使学生进一步了解反比例函数的图像及其性质,让他们体验到学习数学的快乐,在交流中与全班同学分享。

  思考题:

  仔细观察反比例函数的图像,除已学过的性质外,还可以观察出什么特别的性质?

  设计意图:此题是一个简单的开放性问题,为学有余力并对数学有浓厚兴趣的学生设计,目的是为他们提供一定的学习材料,给学生较大的思维空间和思考时间,培养其发散思维,鼓励学生在学习中发现和探索.

  七、反思

  1、同桌互动画图像,改变传统的被动接受知识的教学方式,鼓励学生自己探索、合作交流。对于我班部分个别学生来说画图技巧较弱,课后需再加强辅导。

  2、由于本节课的内容与正比例函数有着密切联系,学生能在旧知识中寻找模型,而最后的运用新知、拓展训练中的第6题,提升了一定的高度,有一小部分同学不那么容易理解,需要进行适当的点拨。

九年级《反比例函数》说课稿 第十篇

  一、 说教学内容

  (一)、本课时的内容、地位及作用

  本课内容是北师大版九年级(上)数学第五章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

  (二)、本课题的教学目标:

  教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:

  1、 知识目标

  (1) 通过对实际问题的探究,理解反比例函数的实际意义。

  (2) 体会反比例函数的不同表示法。

  (3) 会判断反比例函数。

  2、 能力目标

  (1) 通过两个实际问题,培养学生勤于思考和分析归纳能力。

  (2) 在思考、归纳过程中,发展学生的合情说理能力。

  (3) 让学生会求反比例函数关系式。

  3、 情感目标

  (1)通过创设情境让学生经历在实际问题中探索数量关系的过程,体验数学活动与人类的生活的密切联系,养成用数学思维方式解决实际问题的习惯。

  (2)理论联系实际,让学生有学有所用的感性认识。

  4、 本课题的重点、难点和关键

  重点:反比例函数的概念

  难点:求反比例函数的解析式。

  关键:如何由实际问题转化为数学模型。

  二、 说教学方法:

  本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。

  由于学生在前面已学过“变量之间的关系”和“一次函数”的内容,对函数已经有了初步的认识。因此,在教这节课时,要注意和一次函数,尤其是正比例函数一反比例的类比。引导学生从函函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。

  对于所设置的两个问题为学生熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。

  三、 说学法指导:

  课堂,只有宝贵的四十分钟,有相当一部分学生注意力不能集中。针对这种情况,从学生身边的生活和已有的知识出发创设情境,目的是让学生感受到生活中处处有数学,激发学生对数学的兴趣和愿望,同时也为抽象反比例函数概念做好铺垫。让学生自己举例,讨论总结规律,抽象概念,便于学生理解和掌握反比例函数的概念,同时,培养和提高了学生的总结归纳能力和抽象能力。

  为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。

  在本课时的师生互动过程中,积极创造条件和机会,关注个体差异,让学困生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。

  教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的`学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力。

  四、 说教学过程:

  1、 复习引入:

  师生共同回忆前一阶段所学知识,再次强调函数和重要性,同时启开新的课题——反比例函数(教师板书)。

  (一) 创设情景,激发热情

  我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  因而用两个最贴近学生生活实例引出反比例函数的概念;从而让学生感受数学与生活的紧密联系。

  多媒体课件展示

  (问题1)我校车棚工程已经启动,规划地基为36平方米的矩形,设连长为X(米),则另一连长Y(米)与X(米)的函数关系式。

  让学生分析变量关系,然后教师总结:依矩形面积可得

  XY=36 即Y=36/X

  (问题2)昨天在放学回家时,小明的车胎爆了。第二天,小明的爸爸骑摩托车送小明来学校。中午放学小明不得不走回家。(小明家距学校2000米)

  (1)、在这个故事中,有几种交通工具?

  (2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?

  师生共同探究,时间的变化是由速度所引起的,设时间为T,速度为V,则有T=2000/V

  (二) 观察归纳——形成概念

  由实例XY=36 即Y=36/X和T=2000/V 两个式子教师引导学生概括总结出本课新的知识点:

  一般地,形如Y=K/X或XY=K(K是常数,K不为0)的函数叫做反比例函数。

  在此教师对该函数做些说明。

  (三) 讨论研究——深化概念

  学生通过对例1的观察、讨论、交流后更进一步理解和掌握反比例函数的概念

  多媒体课件展示、

  例1、 下列函数关系中,哪些是反比例函数?

  (1)、一个矩形面积是20平方厘米,相邻两条连长分别为X厘米和Y厘米那么变量Y是变量X的函数吗?是反比例函数吗?为什么?

  (2)、滑动变阻器两端的电压为U,移动滑片时通过变阻器的电流I和电阻R之间的关系;

  (3)、某地有耕地346.2公顷,人口数量N逐年发生变化,那么该村人均占有耕地面积M(公顷?(人))是全村人口数N的函数吗?是反比例函数吗?为什么?

  (4)某乡粮食总产量M吨,那么该乡每人平均粮食Y(吨)与该乡人口数X的函数关系。

  学生回答后教师给出正确答案。

  四、 即时训练——巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把课本的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  多媒体课件展示

  (巩固练习:)

  (口答)下列函数关系中,X均表示自变量,那么哪些是反比例函数?每一个反比例函数的K的值是多少?

  Y=5/X Y=0.4/X Y=X/2 XY=2

  5)Y=-1/X(给学困生发表见解的机会,激发他们的学习兴趣)

  学生回答后教师给出正确答案。

  五)突出重点,提高能力

  为了突出重点,特意把书中的练习题设计为例题的形式,以提高学生的分析问题,解决问题的能力,再给出一道类似的题目以加强巩固

  T=24/V

  例3 Y是X的反比例函数,下表给出了X与Y的一些值。

  X-2-1-1/21/123Y2/3-1

  写出这个反比例函数的表达式;

  根据函数表达式完成上表。

  (六)总结反思——提高认识

  由学生总结本节课所学习的主要内容:

  A、 反比例函数的意义;

  B、 反比例函数的判别;

  C、 反比例函数解析式的求法。

  让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  (七)任务后延——自主探究

  学生经过以上五个环节的学习,已经初步掌握了探究数列规律的一般方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样即使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

  课后思考:

  当M为何值时,反比例函数Y=4/X2M-2是反比例函数,并求出其反比例函数解析式。

  (板书设计)

九年级《反比例函数》说课稿(通用10篇)

下载Word文档到电脑,方便收藏和打印~

to-top