当前所在位置: 1级文库 > 精选推荐 > 正文

消元法解二元一次方程组说课稿(最新12篇)

2024-04-11 20:28:05 1级文库

消元法解二元一次方程组说课稿(最新12篇)

  作为一名优秀的教育工作者,就有可能用到说课稿,通过说课稿可以很好地改正讲课缺点。优秀的说课稿都具备一些什么特点呢?下面是小编整理的消元法解二元一次方程组说课稿,欢迎阅读与收藏。

消元法解二元一次方程组说课稿

消元法解二元一次方程组说课稿 第一篇

  一、内容分析

  1.1学习任务分析:二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解,是本节课的核心概念。它既是一元一次方程的延续,又是三元一次方程组的基础。

  1.2学生情况分析:就方程而言,初一学生已有一元一次方程的有关知识。所以本节课将引导学生自己发现新的方程并尝试通过类比“发现”有关新概念,使学生逐步建立方程的知识体系。但对学生来说二元一次方程组的解的表达形式是陌生的,对他们来说正确写出解并理解其含义具有一定的难度。

  二、学习目标设计

  知识目标:使学生掌握二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解的概念。能辨别那些是二元一次方程(组),并能正确的写出他们的解

  能力目标:通过尝试命名新方程、尝试“发明”有关概念,培养学生知识移的能力,并从初一开始养成建立知识体系的习惯。通过学生自己设计问题,充分发挥其主体性,培养创新意识。

  情感目标:体验数学发现中的快乐,激发学生自主学习的乐趣。

  重点 二元一次方程(组)及二元一次方程(组)的解的概念。

  难点 理解、判断二元一次方程(组)的解,并能用正确的形式表达二元一次方程(组)的解。

  三、课堂结构设计

  动手实验,引导学生发现问题(课题)、尝试命名和定义

  练习反馈

  结合实验,引导学生设计问题并发现方程组

  练习反馈

  引导学生在小结巩固中更好的理解概念

  分层练习,引导学生积极探索

  回归实验,学生完善自己的设计

  四、教学媒体设计

  充分利用PPT演示文稿的高效性、板书的实效性和可留性以及事物演示的直观性,将它们有机结合,各取其长。

  五、教学过程设计

  5.1动手实验,引导学生发现问题(课题)、尝试命名和定义。

  实验情境:请学生将手中40厘米长的绳子绷成一个长方形。(课前结已打好,所占长度忽略不计)

  相互交流:学生相互交流所绷成的长方形是否完全相同,有何异同之处。

  (异:各自的长和宽不同;同:周长都是40厘米。)得出实验结论:周长为40厘米的长方形有无数个。(同时借助多媒体演示实验过程与结论)

  引出课题:如果宽设为x厘米,长设为y厘米,你能发现x和y的关系么?(x+y=20)。学生会感觉这个式子既熟悉又陌生。熟悉的是这是个方程,陌生的是它是什么方程。引导学生将它与已学的一元一次方程作比较,(未知数的个数不同),进而请学生尝试给这样的方程命名,并给出命名的理由。(二元一次方程)。引出课题。并且由学生仿照一元一次方程的定义尝试定义二元一次方程。

  二元一次方程的解:请学生说出二元一次方程的解的定义,(使二元一次方程左右两边相等的两个未知数的值)。强调是两个未知数的值。

  就x+y=20这个方程而言,它的解是多少呢?学生发现有无数个,如x=1,y=19;x=2,y=18;通过设问x=1时,y还能取什么值?让学生理

  解虽有无数个解,但x和y是相互制约的,所以前面要加 , x=1 这

  y=19

  一对值就是这个二元一次方程的一个解。并请学生规范的写出一些解。

  这无数个解都适合这个长方形问题么?学生讨论后可得出,负数不行,小数可以,所以长方形问题仍然是无数个解,从而用方程解的知识解释了实验的结论。

  最终用数学知识解释了实验的结论。

  设计说明:实验与二元一次方程相对应,实验的结果与二元一次方程的无数个解相对应。每位学生都参与到实验中,用心感受x、y间的关系,激发探索数学知识的乐趣。并且这个实验将作为一条主线贯穿整个课堂。

  学生自己发现、命名二元一次方程以及概念的知识基础是一元一次方程,知识迁移的要求不高,具有可行性。

  练习1:下列哪些是二元一次方程,哪些不是?

  ① ②

  ③ ④

  学生回答,并紧扣定义说明理由。

  设计说明:牢抓二元、一次、方程三个关键词,设计问题,及时巩固定义。

  请学生小结一元一次方程和二元一次方程的'区别和联系。

  练习2:写出二元一次方程 y-x=10 的一些解。

  设计说明:在讲解解的问题中有三个关键点:1、二元一次方程的解有无数个;2、每一个解由x和y这一对相互制约的值组成;3、解的书写格式。并通过练习反馈掌握情况。

  5.2结合实验,引导学生设计问题并发现方程组。

  5.2.1二元一次方程组的定义

  周长为40厘米的长方形有无数个,若希望这道题的答案是一个而不是无数个,请学生想办法满足我的要求。(小组讨论)

  从学生设计出的众多问题中选一个讲解,若加条件:长比宽长10厘米。

  此时长y宽x需要同时满足x+y=20和y-x=10,如何在书写上体现“同时”呢?

  x+y=20

  前面加上 , 请学生给 y-x=10 命名。(二元一次方程组)并给出定义

  像这样,把两个二元一次方程合在一起就组成了二元一次方程组。

  设计说明:仍通过原来的实验,自然引出二元一次方程组。

  练习3:下列方程组中是二元一次方程组的有

  (1) (2) (3) (4)

  学生分析前三个,对第(4)个展开讨论

  把两个二元一次方程合在一起是二元一次方程组,但二元一次方程组不一

  定都是这样,如第(4)个方程组中共有两个未知数,未知数的指数都是1,它也是二元一次方程组。(强调是方程组中的未知数共2个)

  练习4:判断下列方程组是否是二元一次方程组:

  x=2 x+y=5

  y=-1 2y-3z=1

  设计意图:因为书上给出的定义是描述性定义,为了避免学生理解上产生偏差,特设计这一组练习,以强调所谓二元即指整个方程组中共含有两个未知数。

  5.2.2二元一次方程组的解

  研究方程组 x+y=20 的解。

  y-x=10

  在分别研究了这两个方程解的基础上,请学生对它们所组成方程组的解各抒己见,最终达成共识:把两个二元一次方程的公共解称为二元一次方程组的解。并发现找公共解麻烦, 下课前告诉学生有快速求解的方法。

  设计意图:激发学生的好奇心和探索欲望。

  5.3学会小结,引导学生在小结巩固中更好的理解概念。

  至此长方形问题圆满解决,满足这个条件的长方形只有一个:长15厘米,宽5厘米。在解决这个问题的过程中学了一些新的知识,二元一次方程,二元一次方程的解,二元一次方程组,二元一次方程组的解。

  练习5:方程组 的解是( )

  (强调公共解)

  练习6:写一个解为 的二元一次方程。

  变: 写一个解为 的二元一次方程组。

  练习7:就实验中的长方形问题,每位学生完整的写出设计的题目,并解答。

  设计说明:练习5 巩固二元一次方程组的解的定义;

  练习6 锻炼学生逆向思维的能力;

  练习7 由于在刚刚设计中只采纳了一位学生的设计,现在给大家展示自我的机会,并且通过这个问题巩固全课的知识,前后呼应。

  5.4课后作业:

  必做题:94页 练习、95页1、2。

  选做题:95页 综合运用3、4;

  探索解二元一次方程组的方法。

  六、教学评价设计

  考虑本节课概念多的特点,所以在每个概念的给出后都设立了一个小练习,以反馈学生的掌握情况,便于及时发现问题解决问题。在设置的练习中除了检查对基本知识的掌握,同时重视学生的思维训练,并通过开放题等培养学生的创新意识。

消元法解二元一次方程组说课稿 第二篇

  一、教材分析

  (一)教材的地位和作用

  函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美,学生在探索过程中体验到的数形结合以及数学建模思想,既是对前面所学知识的升华,同时也对今后学习高中的解析几何有着十分重要的意义。

  (二)教学目标

  新一轮的课程改革,旨在促进学生全面、持续、和谐的发展,我认为本节课的教学应达到以下目标:知识技能方面:理解一次函数与二元一次方程组的关系,会用图象法解二元一次方程组;

  数学思考方面:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去思考问题;

  解决问题方面:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题;

  情感态度方面:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信。

  (三)教学重、难点

  从以上目标可以看出,学生既要通过对一次函数与二元一次方程(组)关系的探究,习得知识、培养能力,又要用此关系解决相关实际问题,因此,本节课的教学重点应是一次函数与二元一次方程(组)关系的探索。考虑到八年级学生的数学应用意识不强,本节课的难点应是综合运用方程(组)、不等式和函数的知识解决相关实际问题。而关键则是通过问题情境的设计,激发学生的求知欲,引导学生探索、交流,引导学生发现、分析、解决问题。

  二、教法分析

  《数学课程标准》明确指出“数学教学是数学活动的教学”,“学生是数学学习的主人”。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生自由探索、合作交流与实践创新。对于认知主体来说,八年级学生乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生的主动发展,本节课我采用情境—探究式教学法,以“情境――问题――探究――交流――应用――反思――提高” 的模式展开,以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快学习。

  三、过程分析

  本着重实际、重探究、重过程、重交流的教学宗旨,我将本节课的教学设计成以下六个环节:情景导入——探究合作——解决问题——巩固提高——归纳小结——布置作业。

  这节课,我首先用贴近学生实际、学生感兴趣的问题——上网交费问题引导学生进入本节课的学习,充分调动学生的积极性。课件展示学生回答的用列方程组解答的过程,并提出问题:“同学们在解这个二元一次方程组时,基本上都是用的代入法或加减法,那么解二元一次方程组还有其它的方法吗?”学生讨论后可能会感到束手无策,感到原有的知识不够用了。一石激起千层浪,问题提出来后,如何解决呢?此时,作为教师,应把握好组织者、引导者和合作者的身份,不要急于发表自己的意见,而应启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的态势,从而唤起学生强烈的学习热情,使他们主动积极地投入到探索活动中来。另外,此问题的设置也为后面例题的讲解作好铺垫,有利于教学难点的突破。

  为使学生更好地掌握本节课的重点知识,我遵循从特殊到一般,再从一般到特殊的认知规律,设计了以下问题“你们能否将方程转化为一次函数的形式呢?”“如果能,你们能在平面直角坐标系中能画出它的图象吗?”在学生将方程转化为一次函数的形式并画出图象后,我引导学生观察直线上的几个点,发现它们的坐标都是方程的解,紧接着问“直线上任意一点的坐标一定是方程的解吗?”“是否任意的二元一次方程都可以转化为一次函数的形式呢?”“是否所有直线上任意一点的坐标都是它所对应的二元一次方程的解呢?”学生先独立思考,然后小组讨论,不难发现:每个二元一次方程都对应一个一次函数,于是也就对应一条直线。一连串的问题由浅入深,环环相扣,引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

  紧接着问学生:“你能用刚才的方法研究另一个方程2x—y=1吗?”学生在同一坐标系中画出一次函数y=2x—1的图象后,发现两条直线有一个交点,我又问“这个交点坐标与这两条直线所对应的方程的解有什么关系?与这两个方程组成的方程组的解又有什么关系?”此时,学生慢慢体会到:既然每个二元一次方程都对应一条直线,二元一次方程的每一个解又对应直线上的每一个点,那么两个二元一次方程的公共解就对应着两条直线的公共点,也就是说,二元一次方程组的解不就是对应着两条直线的交点吗?这个时期,教师应留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予及时帮助,师生共同归纳出:用画图象的方法可以解二元一次方程组,从而解决了本节课开头所提出的问题。然后共同归纳:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。这告诉我们,既可用画图象的方法可以解二元一次方程组,也可用解方程组的方法求两条直线交点的坐标。利用刚才已有的探究经验,学生很容易想到此问题的探究还可以从数的角度看,进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,这个函数值是何值。

  这样,学生经过自主探索、合作交流,从数和形两个角度认识了一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,并使学习过程成为一种再创造的过程。学生从一个个小问题的回答,到最后的归纳,充分享受学习、探究带来的快乐,此时教师应充分肯定学生的探究成果,及时对学生进行鼓励,关注学生的.情感体验。

  为满足学生学以致用、争强好胜的心理需求,我特意设计了两个抢答题,既加强了对所学知识的消化理解,又调动了学生的积极性,更让他们在抢答中品味到了成功的快乐。趁着学生高涨的情绪,我迅速引入开头部分意犹未尽的上网收费问题,加以变式,再次激起学生强烈的求知欲望和主人翁的学习姿态。经过一番探索,学生可能想到:要选择合理的收费方式就需要对它们所收费用的大小进行比较,因此一定会有学生用过去的知识——方程或不等式解决问题,对于这部分学生的想法要给予充分的肯定表扬,然后继续提问“你能用今天所学的图象法来解决这个问题吗?”引导学生建立函数模型进行探索。

  学生在同一坐标系中分别画出两个一次函数的图象后,我引导学生观察图象的特征,学生讨论后发现当0 ≤ x < 400时,红色点在蓝色点的上方;当x=400时,红色点与蓝色点重合;当x>400时,红色点在蓝色点的下方,这样利用直线上点位置的高低直观地比较函数值的大小,从而找到答案。为避免图象法作图误差造成的不足,可引导学生通过代数计算求出交点坐标。为培养学生一题多解的能力,我启发学生用作差法,类似地用点位置的高低直观地找到y>0,y=0 及y<0 时所对应的x的范围,进而得到答案。通过对实际问题的探究,学生可以发现图象法的直观性,体会数形结合这一思想方法的应用,并学会用函数的观点,动态地分析不等式和方程(组)。

  为了巩固学生的学习成果,我把刚刚结束不久的铁山矿冶文化旅游节带进课堂,让学生欣赏一组美丽的黄石矿冶文化景点图片,在学生体验家乡美好的轻松愉快氛围中,我再一次出示了一个与之有关的旅游购票问题,并鼓励学生用不同的方法进行解答,进一步培养学生应用数学的意识,从而更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

  在课堂临近尾声时,引导学生对本节课所学进行小结,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。尝试开放式课堂教学,以真正体现学生的主体地位,使课堂活动民主化,多样化。

  本节课的作业由必做题和选做题组成,体现分层教学,让不同的学生在数学上得到不同的发展。

  四、设计说明

  这节课,我始终贯穿以学生为主体的原则,突出数形结合的思想,体现数学建模的价值,渗透应用数学的意识,关注学生个性的发展,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的学生在数学的各个不同方面上都得到不同的发展。

消元法解二元一次方程组说课稿 第三篇

  各位评委老师:

  大家好!今天我说课的题目是人教版七年级数学下册第八章《消元——二元一次方程组的解法》第一课时。

  一、教材分析

  1、教材的地位与作用:本节内容是在学生掌握了二元一次方程方程组的有关概念之后讲授的,用代入消元法解二元一次方程方程组是学生接触到的解方程组的第一种方法,消元体现了化未知为已知的重要思想。它是本章学习的重点和难点,也为解决现实问题提供了方便,同时为以后学习函数、线性方程组以及高次方程组奠定了基础。

  2、教学目标:根据新课标要求以及学生的认知水平,我确定了如下了三维教学目标:

  (1)知识与技能:

  ①会用代入法解二元一次方程组;

  ②能初步体会代入法解二元一次方程组的基本思想—“消元”。

  (2)过程与方法:

  ①培养学生基本的运算技巧和能力;

  ②培养学生观察、比较、分析、综合能力,以及运用旧知识解决新问题的能力。

  (3)情感、态度、价值观:鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生的合作交流意识与探索精神。

  3、教学重点、难点:

  重点:会用代入法解二元一次方程组。

  难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便。探索如何用代入法将“二元”转化为“一元”的消元过程。

  二、教法与学法

  根据七年级学生的思维能力较单一,教学学习活动中归纳能力较差这一特点,本节课主要采取“探究发现式”教学方法,在教学过程中,采用“问题——实践——交流合作——说理——练习”的教学流程。老师对学生在课堂中表现予以帮助与评价,鼓励学生积极主动地参与教学过程。在探索、交流中获取新知。对于学生最重要的是让他们学会学习,因此教学中主要采用了教师引导学生动手实践,自主探索与合作交流的学习方法,在学习过程中充分调动学生从事数学活动的时间和空间,让学生乐于思考、勤于动手,自主的交流与合作,在实践中掌握解二元一次方程组的方法,从面获得新知。使每一个学生都能得到充分的发展。

  三、教学过程

  第一环节:创设情境,导入新课

  引例:篮球联赛中,化育节要到了,蓝球是初一(1)班的拳头项目,为了取得好名次,他们想在全部22场比赛中得到40分。已知每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,那么初一(1)班胜负场数分别是多少?

  设置问题:

  (1)问题中有几个未知数?

  (2)若设胜X场,如何列出一元一次方程求解?

  (3)若设胜X场,负的为Y场,列出的二元一次方程组又是什么?

  (4)列出来的一元一次方程我们会解,那么又如何去解这个二元一次方程组呢?

  问题(2)和(3)让两个学生上黑板列出方程并解方程(1),而问题(3)让学生列出方程组即可,最后一问有意设置矛盾,让学生处于积极思维状态,但一时又难以给出正确的答案。从而引出本节课题:消元。

  (通过问题引起学生注意,同时把学生带入新课的学习情境中,刺激学生对身边发生的问题所蕴含的数学知识的兴趣,注重数学来源于生活的理念.通过创设问题情境自然地揭示新课课题,激发学生求知欲望,同时为本节课的学习打下了良好的思想基础)

  第二环节:师生合作,探究新知

  问题1:因为胜负场数和是22场,所列的方程除了X+Y=22外还有其他哪种形式?

  在学生回答出Y=22—X和X=22—Y,教师接着提问;由这个二元一次方程组

  x+y=22①

  2x+y=40②

  能不能得到方程2X+(22—X)=38?如何得到?提出问题后,将学生分成小组讨论,教师深入学生的讨论中,引导学生观察。例如:从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察。学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上暴露知识发生过程:(1)Y=22—X

  (2)用22—X替换方程2X+Y=40中的Y,即把Y=22—X代入2X+Y=40

  问题2:

  (1)这时,方程组转变为什么方程?哪个未知数的值可以先求出来?从哪里求?问题解完了吗?

  (2)另一个未知数的'值如何求?引导学生回答以上问题后,师生共同完成解答过程,并将结果与前面列一元一次方程求出的结果对照。

  (通过问题的提出,给学生提供从事数学活动的机会,激发学生思考,体现数学知识的形成与过程,引导学生观察、比较,分析问题,鼓励学生思考、合作与交流,有利于学生理解与掌握相关知识与方法,形成良好的数学思维习惯。

  通过演示,提出问题,让学生积极地动脑、动手、动口。在教师的引导下,学生通过观察、分析、比较并积极思考解决问题的方法,有助于学生理解和掌握由二元一次方程组化为一元一次方

  程的过程,从而明确消元思想——由二元化为一元——由未知化为已知。)

  第三环节:师生合作,发现规律

  结论:这种将“二元”转化为“一元”的思想方法,我们称为消元法(并板书课题),在消元法中我们消去一个未知数,消元是我们解方程组的关键。进而提示:我们是如何消元的?引导学生去发现,把一个方程中的某一个未知数用另一个未知数表示后代入另一个方程,消去一个未知数,这种消元法我们称之为代入消元法。

  (这样归纳后,学生对解方程组的思路就会较清晰,能够顺利地实现目标,同时也会对这种方法表现极大兴趣)

  第四环节:典例分析,规范步骤

  让学生自学课本97页例1,规范解题步骤,然后根据云图中提出的问题积极思考明确问题答案,此环节的目的是为了培养学生良好的自学习惯,体现学生的学习活动。然后教师提出问题:

  ①方程组是如何变形的?还有其他变形方法吗?

  ②将已求出的未知数的值代入哪一个方程解出另一个未知数更简便呢?

  ③你能先求出的值吗?

  ③何检验你求出的结果是否正确?

  (通过提出这一系列的问题,使学生对代入消元法解二元一次方程组的步骤更加明确。通过另一种解法,让学生体会一题多解,从而达到举一反三的目的。选择适当变形方式,使运算简便。其目的是让学生意识到代入消元法有时可消去x有时可消去y。目的是为了培养学生良好的检验习惯。)

  第五环节:熟练技能,升华提高

  要求学生练习课本98页第一题(再加一问,用含的代数式表示,体会哪一种表示方法更为简便)。第2题采用学生板演,学生自我批改的形式。在掌握了本节课知识点的基础之上,完成当堂达标测试题。

  第六环节:归纳小结,布置作业

  1、从本节课中你学到了解二元一次方程组的哪种方法?其基本思想是什么?主要步骤有哪些?要求同学之间互相交流讨论。

  2、必做题课本103页

  选做题课本99页3,4

  (作业分必做和选做是为了在巩固本节所学知识的前提下,考虑不同学生的需求。)

  四、板书设计

  8.2消元——二元一次方程组的解法(一)

  Y=4

  Y=22—x

  变形

  设胜了x场,负y场,x+y=22①代入

  2x+y=40②

  设胜了x场,则负

  (22—x)场,则消元

  2x+(22—x)=40③x=18(说明:由于此编辑窗口不能插入线条,所以图示中没有带箭头的线条,请谅解。)

  五、时间分配

  1、创设情景,引入新课(5分)2、师生合作,探求新知(10分)

  3、师生合作,发现规律(3分)4、典例分析,规范步骤(10分)

  5、熟练技能,升华提高(10分)6、归纳小结,作业布置(2分)

  六、设计说明

  本节课教学按照“身边的数学问题引入——寻求一元一次方程的解法——探索二元一次方程组的解法(代入消元法)——典型例题——归纳代入法”的思路进行设计。在教学过程中,充分调动学生的学习积极性,重视知识的发生过程,让学生认知内化,形成能力。将设未知数求一元一次方程的过程与解二元一次方程组的过程进行比较,在复习旧知识的同时获的新知,取得了良好的教学效果。

消元法解二元一次方程组说课稿 第四篇

  一、 关于教材地位和作用的分析

  《 二元一次方程组的解法(5)》是在前面学习了列一元一次方程解应用题及二元一次方程组的解法(代入消元法和加减消元法)基础上的一节综合实际应用课。借助二元一次方程组解决一些简单的实际问题,这是数学联系实际的一个重要方面。对于含有多个未知数的实际问题,利用方程组去解决,其分析方法和解题步骤与列一元一次方程类似,而在列方程方面常比列一元一次方程容易些。教材在让学生在掌握了二元一次方程组的解法后,再次体验二元一次方程组与现实生活的联系和作用。通过本节课的教学,可使学生领悟到数学来源与实践,又反过来作用于实践的辨证唯物主义思想。这对学生进一步学习数学,将起到积极的作用。

  二、 关于教学目标的确定

  (一) 目标分析

  知识和技能目标:

  1、 会根据具体问题中的数量关系列出二元一次方程组及求解

  2、 能检验结果是否符合实际意义

  过程和方法目标

  1、 通过使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性

  2、 在列方程组解应用题的过程中,体会列方程组往往比列一元一次方程容易。

  3、 通过解应用题的学习,渗透把未知转化为已知的辨证思想,从而培养学生分析问题和解决问题的能力

  情感与态度目标

  1、 学生在与同伴交流的学习过程中,形成良好的学习方式和学习态度,树立学习数学的自信心。

  2、 通过列方程组解应用题的学习,认识到数学的价值。

  (二) 重难点分析

  教学重点:根据实际问题的数量关系,找出两个等量关系,列出二元一次方程组。

  教学难点:正确找出两个实际问题中的两个等量关系,并把他们列成两个方程。

  难点突破采取的措施:

  1、 可多种方法解决的实际问题引入,然后由师生共同寻找两个等量关系,多次体验列二元一次方程组解决实际问题的优越性

  2、 用填空和选择的多种题型来寻找题目中的等量关系

  3、 例题中两个问题将它们分列开,将难点分散

  三、 关于教学方法的说明

  从一题多解的和尚吃馒头的引入开始,引导学生寻找等量关系,在合作中寻找解题途径,教师在此过程中做好一个组织者,合作者,引导者的作用,关注学生在此过程中的.生命成长。帮助学生在方程探案中寻找等量关系,然后找到等量关系后,让学生尝试根据等量关系来列二元一次方程组解决问题,接着让学生在填空和选择中寻找等量关系,列方程组,最后是课本例题的教学,让学生自己寻找问题和分析问题,课外,让学生自己编题,领悟方法,这种教学方法符合以下教育过程的规律:

  1、 遵循由旧引新,由浅入深,由特殊到一般再到特殊。体现掌握知识和发展智力相统一的规律。

  2、 创设问题情境,教师不断启发和引导学生思考,由易到难,化整为简,体现教师在教学过程中的组织者、合作者和引导者的作用。

  (二)学法分析

  这种教学方法实际上也教给了学生一种学习方法,使学生学会观察,注意生活中的实际问题,学会自己探究知识分析问题,解决问题,学会寻找、发现,学会归纳总结,逐步掌握获取知识的能力。

  (三)教学手段

  通过多媒体辅助教学,扩大教学容量,提高课堂教学效率。

  四、 关于教学过程的设计。

  (一) 导入设计

  先用轻松的师生对白,让学生进入问题,讨论多种方法解决实际问题,激活学生的思维细胞,让学生进入学习的状态,通过体验新知识的优越性,激发学生学习新知识的积极性。

  (二) 尝试练习

  通过导入中的体验,让学生初步尝试解决问题的能力,在此过程中,有学生成功了,他们尝到了学习新知识的一种成就感,有学生失败了,鼓励他们继续学习,培养克服困难的信心和勇气。

  尝试练习

  1、方程探案记: 你知道盗贼如何分赃吗

  一帮强盗抢来一批布匹,躲在了树林里分赃,由于傍晚天色太黑,看不清他们有多少人,只听见带头的一个强盗喊着说:“每人分布六匹,还剩5匹,每人分布7匹,又少8匹。“请你根据他的说话声来判断,究竟有多少强盗,多少布匹?

  大家一起探讨

  (三) 范例设计

  通过对课本例题的难点进行分解,把一个较复杂的问题,分解成两个小问题,将难点分解。

  某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售。该公司的加工能力是:每天可以精加工6吨或粗加工16吨。现计划用15天完成加工任务。

  问:1、该公司应安排几天粗加工,几天精加工, 才能按期完成任务?

  2、如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么照此安排,该公司出售这些加工后的蔬菜共可获利多少元?

  (四)反馈练习

  通过多种题型:填空、选择及问答的多种形式,培养学生从多角度地分析问题、解决问题的能力。最后,让学生根据课题来自编应用题,体现了数学在实际中的应用价值。

  (五) 归纳小结

  教师启发,学生归纳列二元一次方程组解应用题的一般步骤和方法。

消元法解二元一次方程组说课稿 第五篇

  一、教材分析

  1.教材的地位与作用

  二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。本节内容主要学习和二元一次方程组有关的四个概念。本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。

  2.教学目标

  [知识技能]

  掌握二元一次方程、二元一次方程组及它们的解的概念,通过实例认识二元一次方程和二元一次方程组也是反映数量关系的重要数学模型。

  [数学思考]

  体会实际问题中二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受二元一次方程(组)的重要作用。

  [解决问题]

  通过对本节知识点的学习,提高分析问题、解决问题和逻辑思维能力。

  [情感态度]

  引导学生对情境问题的观察、思考,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  3. 教学重点与难点

  按照《课程标准》的要求,根据上述地位与作用的分析及教学目标,本节课中相关概念的掌握是教学重点。

  通过学生亲身体验,理解二元一次方程(组)解的个数的确定。

  二、学情分析

  七年级学生思维活跃,好奇心强,希望平等交流研讨,厌烦空洞的说教。因此,在教学过程中,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,激发他们的兴趣。一方面通过学案与课件,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生自主练习,合作交流,培养学生学习的主动性、与人合作的精神,激发学生的兴趣和求知欲,感受成功的乐趣。

  三、教法与学法

  1.教法

  数学课程标准明确指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。所以我在教学中不只传授知识,更要激发学生的创造思维,引导学生探究,发现结论的方法。正所谓“教是为了不教”。所以我采用引导发现法为主,情景问答法、讨论法、活动竞赛法、利用多媒体课件辅助教学等完成本节的教学,真正做到教师的主导地位。

  2.学法

  学生是学习的主体,所以本节教学中,引导学生自主探究、归纳总结,运用自主探索与合作交流开拓自己的创造思维。这样调动学生的积极性 ,激发学生兴趣,使学生由被动学习变为积极主动的探究,这也符合数学的直观性和形象性。

  四、教学过程与课堂活动

  为了达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:

  1.创设情境,引入概念

  NBA篮球联赛情景再现,利用世界男篮亚裔球星林书豪激励学生相信自已能够创造奇迹的励志教育,感受数学来源于生活,调动学生顺利引入新课。

  2.观察归纳,形成概念

  概念的教学,不纠缠于其语言本身,而是通过类比整合形成新的概念。由于学生对一元一次方程概念已经很了解,我主要采用了类比的方法,弱化概念的教学,强化对概念的正确理解,通过学案与课件相结合的`方式,以题组形式分层渐进式训练,让学生明晰概念,巩固概念,强化概念,提升能力。

  3.拓展延伸,深入概念

  知识的掌握,能力的提升是一个不断循序上升的过程,而教学过程更是一个生动活沷,主动和富有个性的过程,让学生认真听讲、积极思考,动脑动口,自主探索,合作交流。

  4.当堂检测,强化概念

  通过课堂随机选题的形式答题,通过合作小组交流,全班展示交流,使学生互相学习、互相促进、互相竞争,将小组的认知成果转化为全班同学的共同认知成果,从而营造宽松、民主、竞争、快乐的学习氛围,让学生体验到学习的快乐,成功的喜悦,从而充分体现数学教学主要是学生数学活动教学的基本理念。

  5.反思小结,回归概念

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,培养学生形成完整的知识体系,养成及时反思的习惯。

  五、教后反思

  美国国家研究委员会在《人人关心数学教育的未来》的报告中指出“没有一个人能教好数学,好的教师不是在教数学,而是在激发学生自已去学数学”。只有学生通过自己的思考建立对数学的理解力,才能真正的学好数学。本节课课,我致力于让学生自已去发现数学,研究数学,加强数学思想、方法及科学研究方法的指导,引导学生不断从“学会数学”到“会学数学”,但教无止境,课堂仍然留有遗憾,在今后的教学中,我将从这样的三个方面加强对课堂的研究:一是加强对学法研究、学情研究,让教学方式与内容更符合学生认知规律,更贴近学生实际;二是重视学生课堂的学习感受,营造民主、开放、合作、竞争的学习氛围;;三是提高教学机智、不断创新优化教学方法,科学、合理、灵活地处理课堂上生成的问题。

消元法解二元一次方程组说课稿 第六篇

  各位领导、老师你们好!今天我要为大家讲的课题是人教版七年级(下)第八章第三节《实际问题与二元一次方程》的第一课时。首先,我对本节教材进行一些分析:

  一、教材分析:

  1、教材所处的地位和作用:

  本节内容在全书及章节的地位是:《实际问题与二元一次方程》是数学教材七年级(下)第八章第三节内容。在学生已学习了解二元一次方程组的一般步骤的基础上,进一步以“探究”的形式讨论如何用二元一次方程组解决实际问题。以方程组为工具分析问题、解决问题(即建立方程模型)是全章的重点,同时也是难点。本节内容一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,使分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高。可以说本节是二元一次方程组应用的延伸与拓广。

  2、学情分析:

  七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和初一上下册教材衔接的`特点设计了这节课。

  二、教学方法与教学手段:

  (1)教法分析:

  基于本节课内容的特点和七年级学生的心理特征,在教学中应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,不要代替他们思考,不要过早给出答案。鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思维,得到更大收获。

  (2)学法分析:

  教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际问题有着浓厚的兴趣,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过讨论和交流得到答案,激发学习兴趣,培养应用意识和发散思维。

  三、教学过程及教案设计

  教学目标

  1经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;

  2能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

  3学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答;

  4培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。

  教学难点确定解题策略,比较估算与精确计算。

  知识重点以方程组为工具分析,解决含有多个未知数的实际问题。

  板书设计

  8.3再探实际问题与二元一次方程

  (1)实际问题设未知数列方程组数学问题(二元一次方程组)

  教学过程(师生活动)

  设计理念估时创设情境前面我们结合实际问题,讨论了用方程组表示问题中的条件以及如何解方程组.本节我们继续探究如何用方程组解决实际问题.

  (出示问题)养牛场原有30只母牛和15只小牛,一天约需用饲料675 kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940 kg。饲养员李大叔估计平均每只母牛1天约需用饲料18~20 kg,每只小牛1天约需用饲料7~8 kg。你能否通过计算检验他的估计?

  开门见山,直接提出本节学习目标,强化本章的中心问题.以学生身边的实际问题展开讨论,突出数学与现实的联系.探索分析解决问题学生思考、讨论.判断李大叔的估计是否正确的方法有两种:

  一、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.

  二、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.

  学生在比较探究后发现用方法二较简便.

  设问1:如果选择方法二,如何计算平均每只母牛和每只小牛1天各约需用饲料量?(有前面几节的知识准备,学生可以回答)列方程组求解.主要思路:引导学生探寻解题思路,并对各种方法进行比较,方法一主要是要估算的运用,而方法二是方程思想的应用。实际应用

  实际问题

  数学问题二元一次方程组设未知数列方程组学生先独立思考,然后师生共同讨论解题过程.

  解:设平均每只母牛和每只小牛1天各约需用饲料xkg和ykg。

  找出相等关系列方程组解这个方程组,得这就是说,平均每只母牛和每只小牛1天各约需用饲料20kg和5kg。饲养员李大叔对母牛的食量估计正确,对小牛的食量估计不正确.

  分步到位,渗透模型化的思想。规范解题步骤,培养学生有条理地思考、表达的习惯。

  让学生认识到检验的重要性,并学会正确作答。

  拓广探索比较分析

  设问2:以上问题还能列出不同的方程组吗?结果是否一致?

  个别学生可能会列出如下方程组但结果一致

  .比较分析,加深对方程组的认识。

  课堂练习

  1、《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?

  2、悟空顺风探妖踪,千里只行四分钟。归时四分行六百,风速多少才称雄?顺风速度=悟空行走速度+风速逆风速度=悟空行走速度—风速

  出示古典名题

  一方面及时巩固用方程组解决实际问题的过程,另一方面让学生感受数学文化。

  小结与作业小结提高

  提问:通过这节课的学习,你知道用方程组解决实际问题有哪些步骤?

  学生思考后回答、整理:

  ①设未知数.②找相等关系.③列方程组.④检验并作答.

  以问题的形式出现,引导学生思考、交流,梳理所学知识,建立起符合自身认识特点的知识结构.训练口头表达能力,养成及时归纳总结的良好学习习惯.

  布置作业

  1、必做题:教科书116页习题8.3第1(1)3、5题。

  2、选做题:教科书112页习题.8.3第8题。教后反思

消元法解二元一次方程组说课稿 第七篇

各位评委、老师:

  大家好!我说课的题目是《二元一次方程组的解法----代入消元法》,内容选自人教版九年义务教育七年级数学下册第八章第二节第一课时。

  一、说教材

  (一)地位和作用

  本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想“消元”。二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。初中阶段要掌握的二元一次方程组的解法有代入消元法和加减消元两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的`学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排很少,不过这样也给了我们较大的发挥空间。

  (二) 课程学习目标

  1、会用代入法解二元一次方程组。

  2、初步体会解二元一次方程组的基本思想——“消元”。

  3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想。

  (三)教学重、难点:

  用代入消元法解二元一次方程组 教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。

  二、说教法

  针对本节特点,在教学过程中采用自主探究、师友互助交流的教学方法,由教师提出明确问题,学生积极参思考与讨论探究、师友合作交流,进行总结,使学生从中获取知识。鉴于本节所学知识的特点,抽象教学、学生生搬硬套的学习方式将难取得理想效果,因此教师在引入课题时要利用好远程教育设施及资源创设情境,让学生去经历由具体问题抽象出方程组的过程。并让学生通过独立观察、师友合作交流来探讨怎样才能变“二元”为“一元”。然后利用单个二元一次方程的变形及时强化“代入”的本质。

  三、说学法

  本节学生在独立思考、自主探究中学习并对老师的问题展开有师友讨论与交流。如何用代入消元法将“二元”转化“一元”学生较难掌握,在提出消元思想后,应对具体的消元解法的过程进行归纳,让学生得到对代入法的基本步骤的概括,通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。应注意引导学生认识到为什么要实施这样的步骤。把具体做法与消元结合,使学生明解其目的性。明确这样做的依据是等量代换。整个过程可以通过自主探究和师友合作来实现课程目标,此外,教学中,各个环节主要采用独学,对学,群学的方法,随堂练习时应引导学生通过自我反省小组评价来克服解题时的错误,必要时教师给予规范矫正。

  四、说教学流程

  (一)简单复习

  学师学友面对面,学友说给学师听,什么是二元一次方程(组)?说完后两组师友展示给全班同学听

  (二)自主学习:

  出示学习目标:学生齐读一下,对本课学习有一个大体了解。

  学生认真学习课本P91例题1上面的内容,并回答以下两个问题(电子白板出示)

  1.什么叫消元思想 2.代入消元法

  学习完成之后学生举手回答,教师总结。

  (三)合作探究

  电子白板出示问题:

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,保安族中学校队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

  1.师友合作交流,探究新知

  在上述问题中,除了用一元一次方程解答外,我们还可以设出两个未知数,列出二元一次方程组

  学生活动:分别列出一元一次方程和二元一次方程组,设胜的场数是x 则负的场数为22-x,列方程得 2x+(22-x)=40

  设胜的场数是x,负的场数是y,列方程组得

  x+y=22

  2x+y=40

  2.自主探究,师友讨论

  那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

  3.学生归纳,教师作补充:

  上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

  把下列方程写成用含x的式子表示y的形式

  (1)2x-y=5(2)4x+3y-1=0

  学生活动:尝试自主完成,教师纠正。思考:能否用含y的式子来表示x呢?

  4、教师来说方法:(2)用代入法解方程组

  x-y=3

  3x-8y=14

  思路点拨:先观察这个方程组中哪一项系数较小,发现中x的系数为1,这样可以确定消x较简单,首先用含y的代数式表示x,而后再代入消元。

  解:由变形得 X=y+3

  把代入,得3(y+3)-8y=14

  解这个方程,得 y=-1

  把y=-1代入,得X=2

  所以这个方程组的解是 X=2

  y=-1

  如何检验得到的结果是否正确? 学生活动:口答检验。

  总结步骤:变 代 求 写

  (四)小试牛刀(给你一个展示的舞台)

  解二元一次方程组

  1、 2、

  两名同学到黑板上板演,其他同学在练习本上认真做!(教师巡视学生)

  完成后,教师总结:解二元一次方程组的方法步骤:

  变 代 求 写

  (五)归纳总结,知识回顾

  1、通过这节课的学习活动,你有什么收获?

  2、你认为在运用代入法解二元一次方程组时,应注意什么问题?

  (六)布置作业

  作业:中午:课本 第二题1、2小题

  晚上:《作业与测试》。

消元法解二元一次方程组说课稿 第八篇

  今天,我说课的内容是苏科版八年级上册中的《二元一次方程与一次函数》的第一课时。我打算主要从“说教材,说教法,说学法,说过程”这四大块内容来谈谈我的设计。

  一、说教材

  (一)教材分析(所处的地位及作用)

  “二元一次方程与一次函数”是在前面学习了“一次函数”与“二元一次方程”的基础上来学习的。是对前面“一次函数”和“二元一次方程”的一次提高和升华,也为以后进一步学习“用二次函数图象求一元二次方程的近似解”作铺垫。其中用到的“数形结合”思想是我们中学学习数学重要思想之一,也是我们数学学习中经常用来解决一些实际问题的重要手段。

  (二)教学目标:

  (1)使学生初步理解二元一次方程与一次函数的关系。

  (2)能利用二元一次方程组确定一次函数的表达式。

  (3)能根据一次函数图象求出二元一次方程组的近似解。

  (4)进一步培养学生画图,识图能力;培养学生初步的数形结合意识和能力。

  (三)教学重点、难点;

  重点:

  1、二元一次方程和一次函数的关系。

  2、能根据一次函数的图象求二元一次方程组的近似解。

  难点:

  1、二元一次方程和一次函数之间的对应关系即数形结合的意识和能力。

  2、二元一次方程的解与一次函数图象交点坐标之间的对应关系。

  二、说教法

  本节课我通过与学生一起探讨问题,解决问题,以达师生互动的效果。引导学生从已有的知识和生活经验出发,提出问题,让学生自己动手操作,发现问题,解决问题,从而归纳出解决问题的一般方法。

  针对本节课的重点,难点“二元一次方程(组的解)与一次函数图象(的交点坐标)之间的对应关系”,由于其理解难度大,因此我准备采用“创设情境”用问题串的形式引导学生动手操作、自主探索来研究发现“二元一次方程(组的解)与一次函数图象(的交点坐标)”两者之间的内在联系。对于书上出现的例1:准备先通过学生自己思考,教师引导评讲最终解决问题;对于书上的练习,主要通过学生自己练习,以达到“巩固知识”的目的。

  三、说学法

  在本节课开头,我以学生原有的知识作为基础,创设有助于学生探索思考的问题情境,引导学生用“探索————研究————发现”的方法,来获得知识,掌握知识。不过在这个过程中,可能学生的自主探究能力比较差,因此在这方面我打算更多的引导以解决学生不足之处,发现问题,解决问题的能力得到了进一步的发展;同时也培养了学生积极思考,认真探索的良好学习习惯。

  四、说过程

  这节课我就首先从学生已学过的二元一次方程联想到一次函数出发提出问题:二元一次方程、一次函数、直线的关系。接着通过对书上的`问题串让学生进行合作交流的探索和师生的共同探索得出:

  ⑴二元一次方程、一次函数、直线(一次函数的图象)的关系;

  ⑵函数的对应值、图象上点的横纵坐标、方程的解的关系;并由此产生两种解二元一次方程的方法(图解法和函数法);

  ⑶方程组的解和两直线交点的关系。进而会用图象法解二元一次方程(组)。

  五、反思困惑

  由于本节课是”二元一次方程与一次函数”首次紧密结合,其中充分体现了数学学习中数形结合的思想,学生在理解上有一定难度。因此,如何更好的将本节课的数形结合思想灌输到学生中,特别是在讲到二元一次方程与一次函数的联系,在这方面备课的时候感到比较吃力。希望各位老师给予批评与指正。在这节课的设计中,仍有许多不足之处,请多请教!

消元法解二元一次方程组说课稿 第九篇

各位评委、老师:

  大家好!

  我是来自丁庄镇中心初中的王红。今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。

  下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。

  一、教材分析

  教材的地位和作用

  本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想----“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。

  2、教学目标

  根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:

  (1) 知识技能目标:1)会用代入法解二元一次方程组

  2)初步体会解二元一次方程组的基本思想----消元

  (2) 能力目标:通过对方程组中未知数特点的'观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规思想。通过用代入消元法解二元一次方程组的训练,培养运算能力。

  (3) 情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。

  3、重点、难点

  根据学生的认知特点,我确立了本节课的重难点。

  重点:用代入消元法解二元一次方程组

  难点:探索如何用代入法将“二元”转化为“一元”的消元过程。

  为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。

  成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:

  二、教学方法

  我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。

  三、学法指导

  我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  四、教学设计

  1、根据以上分析,我设计了以下六个教学环节:

  2、教学过程

  下面我就每一个教学环节,具体介绍我对本节课的教学设想。

  环节一:创设情境

  活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分 ,负1场得1 分,我班篮球队为了取得好名次 ,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?

  学生活动:列方程或方程组解决问题

  教师关注:学生是否能够多角度地考虑问题.

  设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。

  环节二、尝试发现

  活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?

  学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。

  教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。

  设计意图:在学生小组讨论的过程中提供充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。

  活动三:小组展示

  学生活动:分小组针对老师给出的题目,展示解二元一次方程组的方法。

  教师关注:关注:学生用语言表达自己的观点的准确性与全面性。

  设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。

  活动四:再看转化、把握解题技巧

  学生活动:观察转化过程中的技巧,并尝试总结。

  设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。

  环节三、 小组闯关

  活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。

  学生活动:做练习题

  教师关注:学生解题的步骤的完整性,和解题的正确并及时的纠正错误

  设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的思想。

  活动六:闯关练习二,给出一个利用二元一次方程组解决的实际问题,拓展学生的思维。

  学生活动:独立完成本题。

  设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。

  环节四、拓展升华

  活动七:出示例题2.

  学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。

  教师关注:学生是否可以找到等量关系,列出方程组,解方程组。

  设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。

  环节五: 反思小结

  活动八:我有哪些收获?

  学生活动:学生归纳总结

  教师关注:

  (1)学生是否养成归纳、整理、总结的好习惯;

  (2)评价学生是否全面理解并掌握了本节课的知识。

  环节六、布置作业

  1、必做题:

  P103 第2题 ⑵ ⑷, 第4题

  2、 选做题:

  设计意图:分层次,选择作业题,有利于学有余力的学生的发展。

  最后我以著名数学家笛卡尔的一句话结束这节课。

  五、板书设计

  8.2二元一次方程组的解法

  ----代入消元法

  1、二元一次方程组 一元一次方程

  2、代入消元法的一般步骤:

  3、思想方法:转化思想、消元思想、方程(组)思想.

  六、教学感想

  在教学过程中,我始终:

  坚持一个原则——教为主导,学为主体

  坚守一个理念——先学后教,以学定教

  贯穿一个思想——享受数学,快乐学习

  以上是我对本节课的理解,有不当之处尽请各位老师批评指正。谢谢!

  我的说课到此结束,谢谢大家。

消元法解二元一次方程组说课稿 第十篇

  一、教学目标

  知识与技能:使学生理解并掌握消元法解二元一次方程组的基本原理和步骤,能够熟练运用消元法解决简单的二元一次方程组问题。

  过程与方法:通过具体实例,引导学生观察、分析、归纳消元法的解题过程,培养学生的逻辑思维能力和问题解决能力。

  情感态度与价值观:激发学生的学习兴趣,培养学生的合作精神和探究意识,让学生体会到数学在解决实际问题中的.应用价值。

  二、教学重点与难点

  教学重点:消元法解二元一次方程组的基本原理和步骤。

  教学难点:如何根据方程组的特点选择合适的消元方式,以及消元过程中的运算技巧。

  三、教学方法与手段

  教学方法:采用启发式、讨论式、探究式等多种教学方法,引导学生主动参与、积极思考。

  教学手段:利用多媒体课件、黑板、实物等教学工具,辅助教学,提高教学效果。

  四、教学过程

  导入新课

  通过回顾一元一次方程的解法,引出二元一次方程组的概念,并举例说明二元一次方程组在实际问题中的应用,激发学生的学习兴趣。

  讲授新课

  (1)介绍消元法的基本原理:通过加减消元或代入消元,将二元一次方程组转化为一元一次方程,从而求解。

  (2)讲解消元法的具体步骤:选择适当的方程进行消元,通过加减或代入消去一个未知数,得到一个一元一次方程;解这个一元一次方程,求出其中一个未知数的值;将求得的未知数值代入原方程组中的任一方程,求出另一个未知数的值;最后检验解的合理性。

  (3)通过具体实例演示消元法的应用,让学生逐步掌握消元法的解题技巧。

  巩固练习

  设计不同难度的练习题,让学生独立完成,巩固所学知识。教师巡视指导,及时纠正学生的错误。

  课堂小结

  总结本节课的学习内容,强调消元法解二元一次方程组的基本原理和步骤,提醒学生注意消元过程中的运算技巧。

  作业布置

  布置适量的课后作业,让学生进一步巩固和拓展所学知识。

  五、教学反思

  本节课通过具体实例引导学生学习消元法解二元一次方程组,注重培养学生的逻辑思维能力和问题解决能力。在教学过程中,教师应关注学生的个体差异,因材施教,让每个学生都能得到发展。同时,教师还应不断反思自己的教学方法和手段,努力提高教学效果。

消元法解二元一次方程组说课稿 第十一篇

  一、说教材分析

  1.教材的地位和作用

  二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

  2.教学目标

  知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

  能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

  情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

  3.重点、 难点

  重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

  难点:在实际生活中二元一次方程组的应用。

  二、教法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

  三、学法

  “问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

  四、教学过程

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1)复习旧知,温故知新

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

  设计意图:构建注意主张教学应从学生已有的`知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2)创设情境,提出问题

  这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

  由问题知道,题中包含两个必须同时满足的条件:

  胜的场数+负的场数=总场数,胜场积分+负场积分=总积分。

  这两个条件可以用方程

  x+y=22

  2x+y=40

  表示:

  上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

  把两个方程合在一起,写成

  x+y=22

  2x+y=40

  像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

  (3)发现问题,探求新知

  满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

消元法解二元一次方程组说课稿 第十二篇

  一、说教材

  首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。

  二、说学情

  接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。

  (二)过程与方法

  通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。

  (三)情感态度价值观

  感受数学与生活的密切联系,培养学习数学的兴趣。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的`解。教学难点是:二元一次方程组解的探究。

  五、说教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?

  根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的课题《二元一次方程组》

  这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。

  (二)新知探索

  接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。

  活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。

  学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。

  此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。

  教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。

  活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。

  在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。

  师生共同总结出二元一次方程与二元一次方程组的定义。

  列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。

  活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。

  在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。

  教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。

  得到方程组的解,回归情景得出实际问题的答案。

  设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。

  (三)课堂练习

  接下来是巩固提高环节。

  练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。

  加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?

  设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。

  (四)小结作业

  在课程的最后我会提问:今天有什么收获?

  引导学生回顾:二元一次方程组的定义与二元一次方程组的解。

  本节课的课后作业我设计为:

  思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。

  设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。

消元法解二元一次方程组说课稿(最新12篇)

下载Word文档到电脑,方便收藏和打印~

to-top